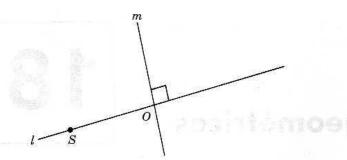

Transformaciones geométricas

18.1 INTRODUCCIÓN A TRANSFORMACIONES

Si se observan en retrospectiva los 17 capítulos anteriores, se verá que aun cuando se han desarrollado diferentes temas de capítulo en capítulo, a través de este material prevalece una idea común: las *posiciones* de todas las figuras geométricas son *fijas*. Es decir, cuando se considera un triángulo, como el $\triangle ABC$ en la figura 18-1, éste permanece inmóvil. En este capítulo se consideran objetos en geometría mientras cambian su posición. Estos objetos (tales como triángulos, líneas, puntos y círculos) se moverán como resultado de una transformación del plano:

DEFINICIÓN 1: Una transformación del plano es una regla que asigna a cada punto del plano un punto distinto o el mismo punto.


Nótese que a cada punto del plano se asigna exactamente un punto. Los puntos que se asignan a sí mismos se denotan como puntos fijos. Si el punto P está asignado al punto Q, se dice que Q es la imagen de P, y conversamente, la imagen de Q es P.

18.2 REFLEXIONES

Imagínese que hay un espejo colocado a lo largo de la línea m, en la figura 18-2. ¿Cuál será la imagen del punto S en el espejo? ¿Cómo se describiría el punto S', la imagen de S? Si pudiera colocarse, de hecho, un espejo a lo largo de la línea m, podría observarse que la imagen de S está en I, atrás de m, y que la distancia de S a O es igual a la distancia de S a S' (véase la Fig. 18-3). Se dice que S' es la imagen de S bajo una reflexión sobre la línea S'0. Nótese que bajo esta reflexión, S'0 es la imagen de S'0.

DEFINICIÓN 2: Una reflexión respecto a la línea m es una transformación del plano con la propiedad de que la imagen de S, un punto que no esté en m, es S', donde m es el bisector perpendicular de $\overline{SS'}$; la imagen de cualquier punto S o S o S imagen de cualquier punto S imagen de cu

Se escribe $R_m(S) = S'$ para significar que S' es la imagen de S bajo reflexión respecto a la línea m.

OS = OS' S'

Fig. 18-2

Fig. 18-3

PROBLEMAS RESUELTOS

18.1 IMAGEN DE UN PUNTO

Encontrar la imagen de (a) A, (b) B, (c) C, (d) \overline{AC} , y (e) $\angle DAC$ bajo la reflexión respecto a la línea t en la figura 18-4.



Fig. 18-4

Soluciones

- (a) B, ya que t es el bisector perpendicular de \overline{AB}
- (b) A
- (c) C, ya que C está en t
- (d) \overline{BC} (¿Por qué?)
- (e) $\angle DBC$, ya que D y C son fijos y $R_t(B) = A$

18.2 IMAGEN DE UN TRIÁNGULO

¿Cuál es la imagen del △ABC de la figura 18-4, bajo una reflexión sobre la línea t?

Solución

Dado que $R_i(A) = B$, $R_i(B) = A$, y $R_i(C) = C$ se tiene que $\triangle ABC$ es su propia imagen.

18.2A Simetría respecto a una línea

En los ejemplos anteriores se puede observar que las imágenes de ángulos son ángulos y que las imágenes de segmentos son segmentos cuando se trata de una reflexión respecto a una línea. Cuando una figura es su propia imagen bajo una reflexión respecto a una línea (como lo es el $\triangle ABC$ en la figura 18-4), se dice que la figura tiene simetría respecto a una línea.

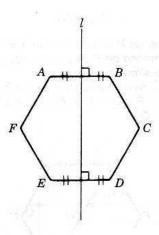
DEFINICIÓN 3: Una figura F exhibe simetría respecto a una línea si existe una línea I tal que la imagen de F bajo una reflexión respecto a la línea I, es F misma. En este caso, se dice que I es la línea de simetría o que es un eje de simetría.

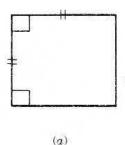
Nótese que cuando una figura exhibe simetría de línea, no todos sus puntos son necesariamente fijos. En la figura 18-4, sólo los puntos C y D son fijos en el triángulo ABC.

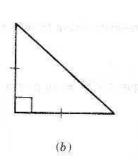
PROBLEMAS RESUELTOS

18.3 LOCALIZACIÓN DEL EJE DE SIMETRÍA

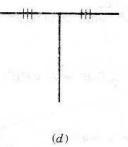
En la figura 18-5, encontrar todos los ejes de simetría para el hexágono regular ABCDEF.




Fig. 18-5


Solución

AD, FC, BE y la línea indicada I, todos son ejes de símetría. Encontrar dos más.


18.4 DESCUBRIMIENTO DE LA SIMETRÍA DE LÍNEA

¿Cuál de los objetos en la figura 18-6 exhibe simetría de línea?

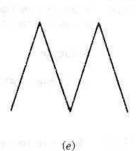


Fig. 18-6

Solución

Todos excepto (c)

18,2B Simetría puntual

No sólo es posible transformar el plano mediante reflexiones respecto a una línea, sino que también mediante reflexiones respecto a un punto. En la figura 18-7, por ejemplo, se puede reflejar Q en el punto P, encontrando el punto Q' tal que QP = PQ'.

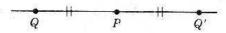


Fig. 18-7

DEFINICIÓN 4: Una reflexión respecto a un punto P es una transformación del plano tal que la imagen de un punto Q, excepto P es Q', donde QP = PQ', y la imagen de P es P (esto es, P es fijo). Si la figura P es su propia imagen bajo tal transformación, se dice que P exhibe simetría puntual.

En la figura 18-8 se muestra un hexágono regular ABCDEF, con AO = OD. Nótese que A es la imagen de D bajo la reflexión respecto a O. Se usará la notación $R_o(A) = D$ y $R_o(D) = A$ para indicar que A y D son sus imágenes respectivas bajo una reflexión respecto al punto O.

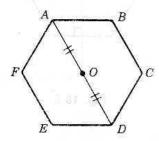


Fig. 18-8

PROBLEMAS RESUELTOS

- (a) E (b) F (c) DA (d) LDOE
- (e) El hexágono DEFABC (así, ABCDEF exhibe simetría puntual).

18.6 LOCALIZACIÓN DE SIMETRÍA PUNTUAL

¿Cuál de los siguientes objetos exhibe simetría puntual?

- (a) Cuadrados
- (c) Triángulos escalenos
- (b) Rombos
- (d) S

Solución

Todos excepto (c)

18.3 REFLEXIONES Y GEOMETRÍA ANALÍTICA

Dado que un punto puede cambiar de posición bajo una transformación, se tiene que la geometría analítica es una herramienta particularmente útil para describir estas transformaciones. Recuérdese que en geometría analítica se trabaja extensamente con la posición de puntos; la determinación de distancias y la localización de puntos son una gran ayuda en la exploración de las propiedades de las transformaciones.

PROBLEMAS RESUELTOS

18.7 Imágenes Bajo Reflexiones (Fig. 18-9)

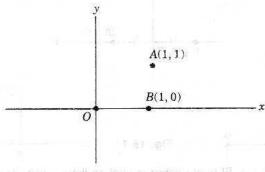


Fig. 18-9

- (a) ¿Cuál es la imagen del punto A bajo una reflexión respecto al eje x? ¿Respecto al eje y?
- (b) ¿Cuál es la imagen de B bajo una reflexión respecto al eje y?
- (c) ¿Cuál es la imagen de O bajo una reflexión respecto al punto O?
- (d) ¿Cuál es la imagen de B bajo una reflexión respecto a la línea y = x?

- (e) ¿Cuál es la imagen de A bajo una reflexión respecto a la línea x = -1?
- (f) ¿Cuál es la imagen del ΔΑΟΒ bajo una reflexión respecto al eje y? ¿Bajo una reflexión respecto a O?

Respuestas

(a) El punto A' en la figura 18-10 es la imagen de A bajo una reflexión respecto al eje x; las coordenadas de A' son (1, −1). El punto A" es la imagen de A bajo una reflexión respecto al eje y; A"(−1, 1).

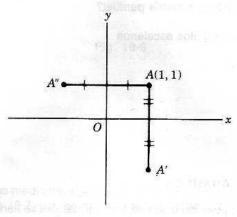


Fig. 18-10

(b) El punto B' en la figura 18-11 es la imagen de B bajo una reflexión respecto al eje y. Sus coordenadas son (−1, 0).

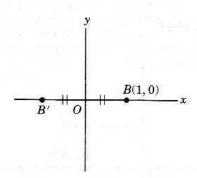


Fig. 18-11

- (c) El punto O es un punto fijo. El punto sobre el cual se lleva a cabo la reflexión siempre es fijo.
- (d) $R_l(B) = B'(0, 1)$, en la figura 18-12. Nótese que la línea l es el bisector perpendicular de $\overline{BB'}$.

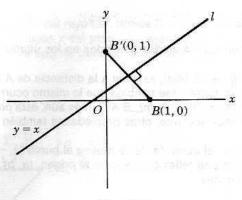


Fig. 18-12

(e) $R_m(A) = A'(-3, 1)$, en la figura 18-13. Nótese que m es el bisector perpendicular de $\overline{AA'}$.

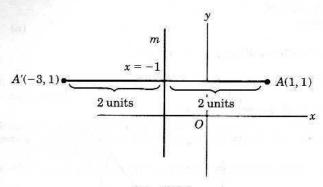


Fig. 18-13

(f) La imagen de $\triangle AOB$ bajo una reflexión respecto al eje y es $\triangle A'B'O$ [véase la Fig. 18-14(a)], donde A' = (-1, 1), B' = (-1, 0), y O = (0, 0). Su imagen bajo una reflexión respecto al origen es $\triangle A''B''O$ en la figura 18-14(b); donde A'' = (-1, -1), B'' = (-1, 0), y O = (0, 0).

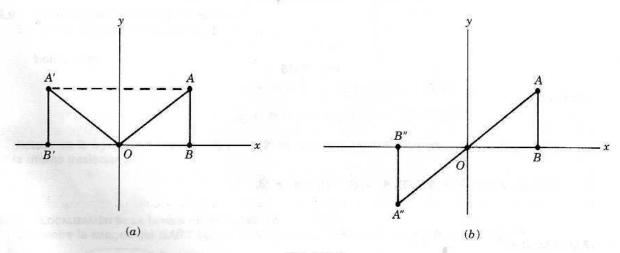
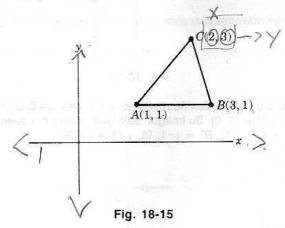


Fig. 18-14

18.3A Patrones en las reflexiones

Se pueden observar varios patrones en los resultados obtenidos en los últimos problemas:


- 1. La distancia entre A' y B' en la figura 18-14(a), es igual a la distancia de A a B. En otras palabras, las distancias son preservadas bajo una reflexión. Obsérvese también que lo mismo ocurre con las medidas de los ángulos. En otras palabras, en la figura 18-14(a), m_BAO = m_B'A'O; más aún, esta propiedad aparentemente es cierta para otras reflexiones. Como se verá más adelante, otras propiedades también se preservan bajo reflexiones.
- Bajo una reflexión respecto al eje x, el punto (a, b) se mueve al punto (a, -b); bajo una reflexión respecto al eje y, (a, b) se mueve a (-a, b); y bajo una reflexión respecto al origen, (a, b) se mueve a (-a, -b). Estos patrones sólo son válidos para estas reflexiones.

PROBLEMAS RESUELTOS

18.8 Más Imágenes Bajo Reflexiones

En la figura 18-15, encuentre:

- (a) La reflexión de C respecto al eje y
- (b) La reflexión de B respecto al origen
- (c) La reflexión del \(\triangle CAB \) respecto al eje x

Soluciones

- (a) (-2, 3)
- (b) (-3, -1)
- (c) $\triangle C'A'B'$, donde C' = (2, -3), A' = (1, -1), y B' = (3, -1).

18.4 TRANSLACIONES

En la figura 18-16(a), sea el $\triangle ABC$, y sea la transformación que consiste en agregar 1, a cada coordenada x, y de agregar 2 a cada coordenada y. El resultado se muestra en la figura 18-16(b): Nótese que el $\triangle ABC$ no cambia de forma

pero si se mueve en el plano en la dirección del rayo \overline{OD} , donde D=(1,2). La coordenada x de D representa la "cantidad" con la cual se recorren las coordenadas x del triángulo; mientras que la ordenada de D es la "cantidad" con la cual se recorren las coordenadas y. Este tipo de transformación se denota como traslación.

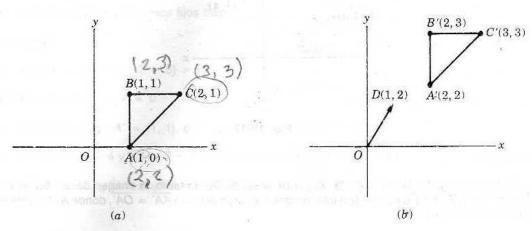


Fig. 18-16

DEFINICIÓN 5: Una traslación es una transformación del plano tal que la imagen de todo punto (a, b) es el punto (a + (h, b + k)) donde h y k están dadas.

Una traslación tiene el efecto de mover todo punto la misma distancia en la misma dirección. Se utilizará la notación $T_{(b,k)}(a,b)$ para indicar la imagen de (a,b) bajo una traslación de h unidades en la dirección x y k unidades en la dirección v.

Tal y como ocurre en una reflexión, la distancia y la medida de los ángulos son propiedades preservadas bajo una traslación.

PROBLEMAS RESUELTOS

18.9 LOCALIZACIÓN DE LA IMAGEN DE UN PUNTO Encuentre: $T_{(-1,1)}(1, 4)$ y $T_{(-1,1)}(-1, 2)$.

Soluciones

$$T_{(-1,1)}(1, 4) = (1 + (-1), 4 + 1) = (0, 5)$$

 $T_{(-1,1)}(-1, 2) = (-1 + (-1), 2 + 1) = (-2, 3)$

Nótese en la figura 18-17, que (1, 4) y (-1, 2) se traslada el mismo número de unidades en la misma dirección por la misma traslación T.

18.10 LOCALIZACIÓN DE LA IMAGEN DE UN TRIÁNGULO

Encuentre la imagen del $\triangle ABC$ bajo la traslación $T_{(1,2)}$, donde A=(0,0), B=(1,1) y C(1,0).

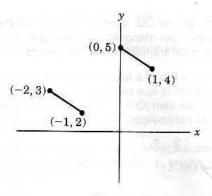


Fig. 18-17

 $T_{(1,2)}(0, 0) = (1, 2), T_{(1,2)}(1, 1) = (2, 3), T_{(1,2)}(1,0) = (2, 2).$ Por lo tanto, la imagen del $\triangle ABC$ es el $\triangle A'B'C'$ en la figura 18-18. Todos los puntos son trasladados a lo largo del rayo $\overline{AA'} = \overline{OA'}$, donde A'(1, 2) tiene las coordenadas de la traslación.

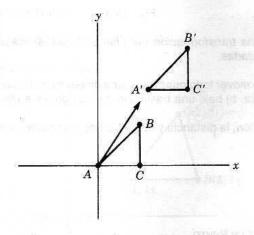


Fig. 18-18

18.11 LOCALIZACIÓN DE LAS IMÁGENES DESDE OTRA IMAGEN

Bajo una cierta traslación, T(5, 2) = (7, 1). Encuentre T(-3, 6) bajo la misma traslación.

Solución

Se tiene que
$$T_{(b,k)}(5,2)=(7,1)$$
. Así, $5+h=7$, o $h=2$; también $2+k=1$, por lo que $k=-1$. Entonces $T_{(2,-1)}(-3,6)=(2+(-3),-1+6)=(-1,5)$

18.12 LOCALIZACIÓN DE VARIAS IMÁGENES BAJO UNA TRASLACIÓN

- (a) Encuentre T_(-1,0)(6, 2)
- (b) Encuentre $h, k \text{ si } T_{(h,k)}(1, 7) = (0, 0)$

- (c) Encuentre la imagen del cuadrado ABCD bajo la traslación $T_{(1,1)}$ donde A=(0,0), B=(1,0), C=(0,1), y D=(1,1).
- (d) Encuentre $T_{(h,k)}(1, 6)$ si $T_{(h,k)}(4,1) = (0, -7)$.
- (e) Encuentre todos los puntos fijos bajo $T_{(-1,4)}$.

- (a) T(6, 2) = (6 + (-1), 2 + 0) = (5, 2)
- (b) h = 0 1 = -1; k = 0 7 = -7
- (c) A'B'C'D', donde A' = (1, 1), B' = (2, 1), C' = (1, 2), D' = (2, 2).
- (d) h = 0 4 = -4 y k = -7 1 = -8, entonces T(1, 6) = (-3, -2)
- (e) Solamente T_(0,0) tiene puntos fijos. Cualquier otra traslación incluyendo T_(-1,4) no los tiene.

18.13 LOCALIZACIÓN DE IMÁGENES DE FIGURAS

Sean A = (1, 1), B = (2, 2) y C = (3, 1). Encuentre la imagen bajo $T_{(2,-1)}$ de: (a) \overline{AB} , (b) $\triangle ABC$, (c) $\angle CBA$.

Soluciones

- (a) $\overline{A'B'}$, donde A' = (3, 0) y B' = (4, 1)
- (b) $\triangle A'B'C'$, con C' = (5, 0)
- (c) LC'B'A'

18.5 ROTACIONES

Considérese el cuadrado *ABCD* de la figura 18-19(a). Supóngase que el cuadrado se rota 90° alrededor del punto *P*, en sentido contrario al de las manecillas del reloj, tal y como lo muestra la flecha. (Imagínese que el cuadrado está separado de la página pero está sujeto a ella mediante un alfiler a través del punto *P*.) Entonces:

La imagen de B será A.

La imagen de C será B.

La imagen de D será C.

La imagen de A será D.

Ahora, considérese al punto S de la figura 18-19(b). El punto puede rotarse 50° alrededor de P, por ejemplo, como si fuera uno de los extremos de una regla que estuviera clavada a la página en P. La imagen de S es S'.

En ambas rotaciones, el segmento de P al punto que se está rotando, es congruente con el segmento que va de P a la imagen de ese punto.

DEFINICIÓN 6: Una rotación a lo largo de un ángulo de medida θ grados alrededor de un punto P, es una transformación del plano tal que la imagen de P es P y, para cualquier otro punto B \neq P, la imagen de B es B', donde m \angle BPB' = θ y $\overline{BP} \cong \overline{B'P}$.

La figura 18-20 muestra P, B, B', y θ . Si $\theta > 0$, la rotación es en contra de las manecillas del reloj. Si $\theta < 0$, la rotación es en el sentido de las manecillas del reloj.

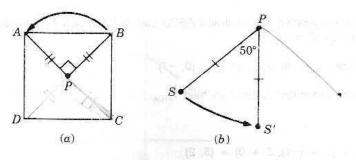
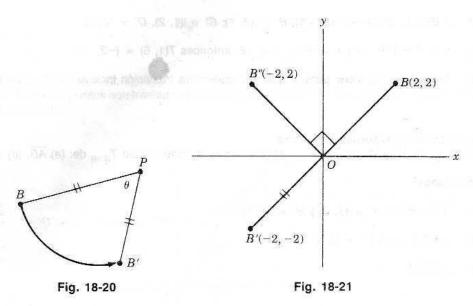



Fig. 18-19

Se usa la notación $Rot_{(P,\theta)}(B)$ para indicar que el punto B se va a rotar alrededor del punto P, un ángulo de θ grados. Bajo una rotación se preservan las longitudes de segmentos de línea, al igual que las medidas de ángulos.

Sea el punto B en la figura 18-21, y sea la rotación de B de 180°, alrededor de D. La imagen de B es B'(-2, -2). Nótese que B' corresponde también a la imagen de B bajo una reflexión respecto al punto D.

Sea ahora una rotación de B de 90° alrededor de O. La imagen es ahora B''(-2, 2). Nótese que B'' también es la imagen de B bajo una reflexión respecto al eje y.

Atención: estas dos semejanzas de las transformaciones son coincidencias. Aparecen porque se están llevando a cabo rotaciones de 90° y 180° alrededor del origen. ¡No se debe generalizar más allá de estos casos! Sin embargo, estas coincidencias dan lugar a las fórmulas siguientes:

$$Rot_{(0.90^{\circ})}(a, b) = (-b, a)$$
 y $Rot_{(0.180^{\circ})}(a, b) = (-a, -b)$

PROBLEMAS RESUELTOS

18.14 LOCALIZACIÓN DE LAS ROTACIONES DE UN PUNTO

Sea A=(1,3) y B=(2,1), encuentre: (a) $\mathrm{Rot}_{(\mathcal{O},90^\circ)}(A)$, (b) $\mathrm{Rot}_{(\mathcal{O},90^\circ)}(B)$, y (c) la imagen de \overline{AB} bajo una rotación de 90° alrededor de O.

- (a) $Rot_{(0,90^{\circ})}(a, b) = (-b, a) = (-3, 1)$
- (b) $Rot_{(O,90^{\circ})}(2, 1) = (-1, 2)$
- (c) La imagen buscada es $\overline{A'B'}$, donde $\overline{A'} = (-3, 1)$ y $\overline{B'} = (-1, 2)$ como se muestra en la figura 18-22.

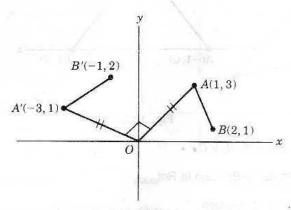


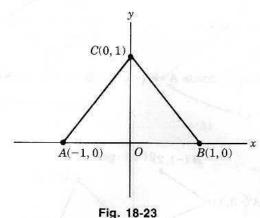
Fig. 18-22

18.15 LOCALIZACIÓN DE LA IMAGEN DE UN TRIÁNGULO

- (a) Encuentre la imagen del $\triangle ABC$ bajo una rotación de 180° alrededor de O, si A=(1,3), B=(2,1) y C=(1,1).
- (b) Encuentre la imagen de LBAC.

Soluciones

- (a) $Rot_{(O,180^\circ)}(A) = (-1, -3) = A'$ $Rot_{(O,180^\circ)}(B) = (-2, -1) = B'$ $Rot_{(O,180^\circ)}(C) = (-1, -1) = C'$ La imagen de $\triangle ABC$ es $\triangle A'B'C'$
- (b) La imagen de LBAC es LB'A'C'.


18.5A Simetría de una rotación

La imagen del cuadrado en la figura 18-19 bajo una rotación de 90° es el cuadrado mismo. Esto también es cierto para una rotación de -90° o de 180°, etc.

PROBLEMAS RESUELTOS

18.16 DETERMINACIÓN DE LA SIMETRÍA DE LA ROTACIÓN (Fig. 18-23)

- (a) Encuentre la Rot_(O,45°)(O).
- (b) Encuentre la Rot_(O.90°) de A, B y C.

- Fig. 10-,
- (c) Encuentre la Rot_(O,-90°) de A, B, y C.
- (d) Encuentre la imagen de △ABC bajo la Rot_(O,90°)
- (e) ¿Exhibe el △ABC simetría rotacional?

- (a) Rot(O) = O
- (b) Rot(A) = A'(0, -1); Rot(B) = B'(0, 1); Rot(C) = C'(-1, 0)
- (c) Rot(A) = A''(0, 1); Rot(B) = B''(0, -1); Rot(C) = C''(1, 0)
- (d) $Rot(\triangle ABC) = A''B''C''$
- (e) No, ya que no es su propia imagen para cualquier rotación, exceptuando una de 360°.

18.6 DILATACIONES

Supóngase que se infla un globo por etapas y que en cada etapa se dibuja un contorno. Los trazos podrían ser como los mostrados en la figura 18-24. Aunque el globo cambió de tamaño en el paso de la etapa (a) a la (b), su forma no cambió. Nótese que si C está en \widehat{AB} , entonces su imagen C' está en \widehat{AB}' . Una transformación del plano de este tipo se denota dilatación. La transformación "de regreso" también es una dilatación: se puede hacer que el globo reduzca su tamaño por medio de una transformación que vaya de (b) a (a).

DEFINICIÓN 7: sean un punto p en el plano y un número positivo n, entonces una transformación del plano, denotada como dilatación de n con centro de dilatación P, tiene las siguientes propiedades: el punto P es fijo, para cualquier punto Q, la imagen de Q es el punto Q' tal que PQ' = (n)(PQ) y \overrightarrow{PQ} y \overrightarrow{PQ} son rayos idénticos.

El punto Q' se denota como $D_n(Q)$.

En la figura 18-25 se muestra una dilatación en la que n=2 y el centro de la dilatación es P. Por lo tanto, $D_2(A)=A'$, $D_2(B)=B'$, y $D_2(P)=P$. En adición, dado que n=2 se tiene que PA'=2PA y que PB'=2PB. De la figura 18-25 se hacen evidentes las propiedades:

1. Las dilataciones no preservan distancias.

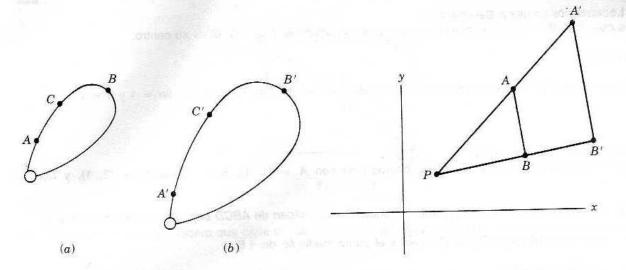


Fig. 18-24

Fig. 18-25

- 2. La imagen de una figura es similar a ésta bajo una dilatación. En la figura 18-25, el $\triangle PAB \sim \triangle PA'B'$.
- Los ángulos se preservan bajo una dilatación (a causa del punto 2 de arriba).

Cuando el centro de la dilatación es O(0, 0), se pueden encontrar fácilmente las imágenes de los puntos: $D_n(x, y) = (nx, ny)$.

PROBLEMAS RESUELTOS

18.17 LOCALIZACIÓN DE LA DILATACIÓN DE UN TRIÁNGULO Encuentre la imagen del $\triangle ABC$ de la figura 18-26 bajo una dilatación de $n=\frac{1}{2}$ y con centro (0, 0).

Solución

 $D_{1/2}(1,1)=(\frac{1}{2},\frac{1}{2})=B'$, como se muestra en la figura 18-26. También $D_{1/2}(1,0)=(\frac{1}{2},0)=A'$; $D_{1/2}(2,1)=(1,\frac{1}{2})=C'$. Entonces, $\triangle B'A'C'$ es la imagen de $\triangle BAC$, y $\triangle B'A'C'\sim\triangle BAC$. Nótese aquí que la imagen es más pequeña que el triángulo original ya que $n=\frac{1}{2}$.

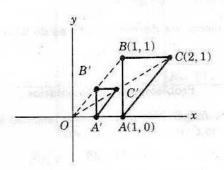


Fig. 18-26

18.18 LOCALIZACIÓN DE UNA n DESCONOCIDA

Dado que $D_a(8, 0) = (1, 0)$, encuentre n para una dilatación en la que (0, 0) es su centro.

Solución

Dado que el origen es el centro de la dilatación, (1, 0) = (8n, 0n). Por lo tanto, 8n = 1 y $n = \frac{1}{8}$.

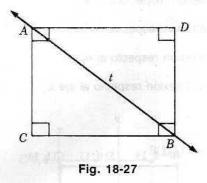
18.19 DILATACIÓN DE UN CUADRADO

Dibuje el cuadrado ABCD en el plano coordenado con A = (1, 1), B = (1, 2), C = (2, 1), y D(2, 2). Entonces:

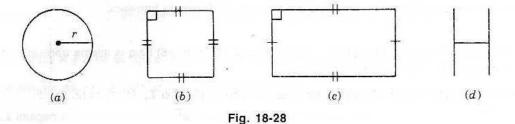
- (a) Con O como centro de la dilatación, encuentre la imagen de ABCD bajo una dilatación de $n = \frac{1}{3}$.
- (b) Encuentre el punto medio M de \overline{AB} y el punto medio M' de $\overline{A'B'}$.
- (c) Encuentre $D_{1/3}(M)$.

Soluciones

- (a) Para una dilatación con centro (0, 0) y $n = \frac{1}{3}$, se tiene que $D(x, y) = (\frac{1}{3}x, \frac{1}{3}y)$. La imagen de ABCD es A'B'C'D', donde $A' = (\frac{1}{3}, \frac{1}{3})$, $B' = (\frac{1}{3}, \frac{1}{3})$, $C' = (\frac{2}{3}, \frac{1}{3})$, $D' = (\frac{2}{3}, \frac{2}{3})$.
- (b) $M = \binom{1}{2}(1+1), \frac{1}{2}(1+2)) = (1, \frac{3}{2}) y M' = \binom{1}{3}(1), \frac{1}{3}\binom{3}{2}) = \binom{1}{3}, \frac{1}{2}$.
- (c) D(M) = M'


18.7 PROPIEDADES DE TRANSFORMACIONES

En este punto, se resumen las propiedades de las transformaciones. En particular, interesa saber qué se preserva bajo qué transformación.


- Las reflexiones preservan: (a) distancias, (b) medidas de ángulos, (c) puntos medios, (d) paralelismo, y (e) colinearidad.
- 2. Las translaciones preservan las mismas cinco propiedades (a) a (e).
- 3. Las rotaciones también preservan estas cinco propiedades.
- 4. Las dilataciones preservan todas menos las distancias, esto es de (b) a (e) solamente.

Problemas complementarios

- Para la figura 18-27, encuentre la imagen bajo una reflexión respecto a la línea t, de cada uno de los objetos siguientes: (a) el punto D; (b) punto C; (c) punto B, y (d) AC.
- 2. Encuentre la imagen del rectángulo ABCD de la figura 18-27, bajo la reflexión respecto a la línea t. (18.2)

- Diga si es falso o verdadero que cada círculo es su propia imagen bajo una reflexión respecto a un diámetro. (18.2)
- 4. Encontrar todos los ejes de simetría para el rectángulo de la figura 18-27. (18.3)
- 5. Dé (o dibuje) un ejemplo de un polígono de cinco lados que no exhiba simetría de línea. (18.4)
- 6. Explique por qué cada figura de la figura 18-28 exhibe simetria de línea. (18.4)

. En la figura 18-29, encuentre: (a) $R_o(B)$; (b) $R_o(A)$; (c) $R_o(O)$; (d) $R_o(\triangle AOB)$.

A(2,2) B(2,0)

Fig. 18-29

- 8. En la figura 18-30, encuentre:
 - (a) La imagen de E bajo una reflexión respecto al eje y.

(18.7, 18.8)

(18.5)

- (b) La imagen de B bajo una reflexión respecto al eje y.
- (c) La imagen de \overline{AB} bajo una reflexión respecto al eje y.
- (d) La imagen de \overline{BC} bajo una reflexión respecto al eje x.
- (e) La imagen de ABCD bajo una reflexión respecto al eje x.

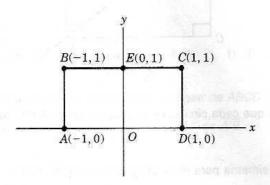


Fig. 18-30

9. Encuentre (a)
$$T_{(1,3)}(2, 8)$$
; (b) $T_{(1,3)}(6, 5)$; (c) $T_{(1,3)}(0, 0)$; (d) $T_{(1,3)}(1, 1)$ (18.9)

- 10. Encuentre la imagen del rectángulo ABCD de la figura 18-30 bajo la translación $T_{(3,6)}$. (18.10)
- 11. Bajo una translación específica, T(3, 4) = (0, 0). Encuentre T(-8, -6) bajo la misma translación. (18.11)
- 12. Encuentre: (a) $T_{(4,3)}(0, -6)$; (b) $T_{(h,k)}(3, 7)$; (c) $T_{(h,k)}(e, f)$; (b) $T_{(h,k)}(4, 1)$ si $T_{(h,k)}(1, 1) = (2, 2)$. (18.12)
- 13. En la figura 18-31, encuentre: (a) $T_{(0,0)}(\overline{EF})$; (b) $T_{(1,0)}(\overline{EF})$; (c) $T_{(0,1)}(\overline{EF})$; (d) $T_{(0,0)}(\triangle OEF)$. (18.13)
- 14. Sean x = (4, 1) y y = (0, 3), encuentre: (a) $Rot_{(0, 90^\circ)}(x)$; (b) $Rot_{(0, 90^\circ)}(y)$; (c) la imagen de \overline{yx} bajo una rotación de 90° alrededor del origen. (18.14)
- 15. Encuentre la imagen del ΔΕΟF de la figura 18-31 bajo una rotación de 180° alrededor de O. (18.15)

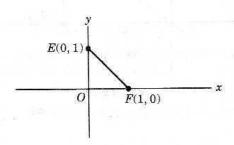


Fig. 18-31

16. En la figura 18-32 encuentre: .

(18.16)

- (a) $Rot_{(O, 90^\circ)}(A) \ y \ Rot_{(O, 90^\circ)}(B)$
- (b) $Rot_{(O, -90^\circ)}(A) \ y \ Rot_{(O, 90^\circ)}(B)$
- (c) La imagen de OABC bajo Rot_(O,-90°)

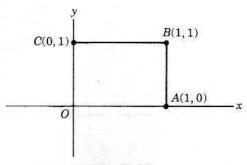


Fig. 18-32

- 17. Encuentre: (a) $D_{1/3}(-1, 3)$; (b) $D_{1/2}(5, -3)$; (c) $D_4(0, 0)$, y (d) $D_5(1, 6)$, si el centro de la dilatación en cada caso es el origen. (18.17)
- **18.** Si el centro de una dilatación D_n es (0, 0) y $D_n(3, 6) = (5, 10)$, encontrar n y $D_n(0, -7)$ (18.18)
- 19. Para los puntos A y B de la figura 18-33, y para dilataciones con centro en (0, 0), encuentre: (18.19)
 - (a) La imagen del $\triangle OAB$ bajo una dilatación con $n = \frac{1}{2}$
 - (b) La imagen del punto medio de \overline{AB} bajo una dilatación con n=3

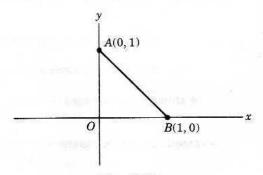


Fig. 18-33

Formulario

FÓRMULAS DE ÁNGULOS

1	Complemento	de	20

2. Suplemento de aº

3. La suma de las medidas de los ángulos de un triángulo

4. La suma de las medidas de los ángulos de un cuadrilátero

 La suma de las medidas de los ángulos exteriores de una figura cualquiera

 La suma de las medidas de los ángulos interiores de una figura cualquiera

 La medida de cada ángulo interior de una figura equiangular o regular cualquiera

 La medida de cada ángulo exterior de una figura equiangular o regular cualquiera

9. La medida de LO central interceptando un arco de aº

10. La medida de LA inscrito interceptando un arco de aº

 La medida de ∠A formado por una tangente y una cuerda e interceptando un arco de aº

 La medida de LA formado por la intersección de dos cuerdas e interceptando los arcos de aº y bº

13. La medida de LA formado por la intersección de dos tangentes, dos secantes, o la intersección de una tangente y una secante e interceptando los arcos de aº y bº

14. La medida de LA inscrito en un semicírculo

15. LA y B opuestos de un cuadrilátero inscrito

1.
$$c = 90^{\circ} - a^{\circ}$$

2.
$$s = 180^{\circ} - a^{\circ}$$

3.
$$S = 180^{\circ}$$

4.
$$S = 360^{\circ}$$

5.
$$S = 360^{\circ}$$

6.
$$S = 180^{\circ}(n-2)$$

7.
$$S = \frac{180^{\circ}(n-2)}{n}$$

$$S = \frac{360^{\circ}}{n}$$

9.
$$mLO = a^{\circ}$$

10.
$$m \angle A = \frac{1}{2}a^{\circ}$$

11.
$$mLA = \frac{1}{2}a^{\circ}$$

12.
$$m \triangle A = \frac{1}{2}(a^{\circ} + b^{\circ})$$

13.
$$m \angle A = \frac{1}{2}(a^{\circ} - b^{\circ})$$

14.
$$m \perp A = 90^{\circ}$$

15.
$$m \angle A = 180^{\circ} - m \angle B$$

FÓRMULAS DE ÁREAS

4	Araa	do un	rectángulo
	Alea	ue un	rectandulo

1.
$$K = bh$$

2.
$$K = s^2$$
,

3.
$$K = bh$$
,

4.
$$K = \frac{1}{2}bh$$
, $K = \frac{1}{2}ab \text{ sen } C$

5.
$$K = \frac{1}{2}h(b + b'), K = hm$$

6.
$$K = \frac{1}{4}s^2\sqrt{3}$$

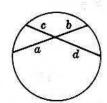
7.
$$K = \frac{1}{2}dd'$$

8.
$$K = \frac{1}{2}pr$$

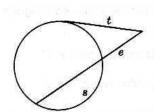
$$9. \quad K = \pi r^2,$$

$$K = \frac{1}{4}\pi d^2$$

 $K = \frac{1}{2}d^2$

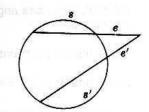

 $K = ab \operatorname{sen} C$

 $K = \frac{1}{3}h^2\sqrt{3}$


10.
$$K = \frac{n}{360} (\pi r^2)$$

FÓRMULAS DE LA INTERSECCIÓN DE CÍRCULOS

1.



Cuerdas intersectoras ab = cd

Tangente y secante intersectoras

$$\frac{s}{t} = \frac{t}{e}, t^2 = se$$

Secantes intersectoras se = s'e'

FÓRMULAS DE TRIÁNGULOS RECTÁNGULOS

1. C C C C	Teorema de Pitágoras	1. $c^2 = a^2 + b^2$
2. B C A C	Cateto opuesto al ángulo de 30° Cateto opuesto al ángulo de 45° Cateto opuesto al ángulo de 60°	2. $b = \frac{1}{2}c$ $b = \frac{1}{2}c\sqrt{2}, b = a$ $b = \frac{1}{2}c\sqrt{3}, b = a\sqrt{3}$
3. 8 h	Altura de un triángulo equilátero Lado de un triángulo equilátero	3. $h = \frac{1}{2}s\sqrt{3}$ $s = \frac{2}{3}h\sqrt{3}$
4. d/8	Lado de un cuadrado Diagonal de un cuadrado	4. $s = \frac{1}{2}d\sqrt{2}$ $d = s\sqrt{2}$
5. C A A A A A A A	Altura de la hipotenusa Cateto del triángulo rectángulo	5. $\frac{p}{h} = \frac{h}{q}, h^2 = pq, h = \sqrt{pq}$ $\frac{c}{a} = \frac{a}{p}, a^2 = pc, a = \sqrt{pc}$ $\frac{c}{b} = \frac{b}{a}, b^2 = qc, b = \sqrt{qc}$

FÓRMULAS DE GEOMETRÍA ANALÍTICA

ANALIJCA	SE FRENCHSES NO JUDINARIT NO RECURS
1. $y = P_2$ Punto intermedio M	1. $x_M = \frac{x_1 + x_2}{2}$, $y_M = \frac{y_1 + y_2}{2}$
P_1 (x_N, y_N) Distancia entre dos puntos	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
La pendiente de la recta F	$p_1 P_2$ $m = \frac{y_2 - y_1}{x_2 - x_1}$, $m = \frac{\Delta y}{\Delta x}$, $m = \tan x$
2. Las pendientes de dos recoparalelas L_1 y L_2	
Las pendientes de dos rec	
$x \stackrel{\frown}{ } C _{y'} \stackrel{\frown}{ } L'$ perpendiculares L , y L_2	$m'=-\frac{1}{m}, m=-\frac{1}{m'}$
The second of th	a al eje x 3. $y = k'$
k' La ecuación de L_2 , paralel	a at eje y $x = k$
$x' O _{y'} $ $k x$	
4. U La ecuación de L_1 , con pe V -intercepción V	ndiente m y 4. $y = mx + b$
L_3 La ecuación de L_2 con per cruzando el origen	y - mx
x La ecuación de L , con x -ir x x y y -intercepción y	
La ecuación de L ₃ con per	
pasando por (x_1, y_1)	$y - y_1 = m(x - x_1)$
5. x' La ecuación del círculo cor el origen y radio r	1 centro en 5. $x^2 + y^2 = r^2$
y'	

TABLA DE FUNCIONES TRIGONOMÉTRICAS

Medidas de ángulos	Seno	Seno Coseno	Tangente	Medidas de ángulos	Seno	Coseno	Tangente	
1°	.0175	.9998	.0175	26°	.4384	.8988	.4877	
2°	.0349	.9994	.0349	27°	.4540	.8910	.5095	
3°	.0523	.9986	.0524	28°	.4695	.8829	.5317	
4°	.0698	.9976	.0699	29°	.4848	.8746	.5543	
5°	.0872	.9962	.0875	30°	.5000	.8660	.5774	
6°	.1045	.9945	.1051	31°	.5150	.8572	.6009	
7°	.1219	.9925	.1228	32°	.5299	.8480	.6249	
8°	.1392	.9903	.1405	33℃	.5446	.8387	.6494	
9°	.1564	.9877	.1584	34°	.5592	.8290	.6745	
10°	.1736	.9848	.1763	35°	.5736	.8192	.7002	
11°	.1908	.9816	.1944	36°	.5878	.8090	.7265	
12°	.2097	.9781	.2126	37°	.6018	.7986	.7536	
13°	.2250	.9744	.2309	38°	.6157	.7880	.7813	
14°	.2419	.9703	.2493	39°	.6293	.7771	.8098	
15°	.2588	,9659	.2679	40°	.6428	.7660	.8391	
16°	.2756	.9613	.2867	41°	.6561	.7547	.8693	
170	.2924	.9563	.3057	42°	.6691	.7431	.9004	
18°	.3090	.9511	.3249	43°	.6820	.7314	.9325	
19°	.3256	.9455	.3443	440	.6947	.7193	.9657	
20°	.3420	.9397	.3640	45°	.7071	.7071	1.0000	
21°	.3584	.9336	.3839	46°	.7193	.6947	1,0355	
22°	.3746	.9272	.4040	47°	.7314	.6820	1.0724	
23°	.3907	.9205	.4245	48°	.7431	.6691	1.1106	
24°	.4067	.9135	.4452	49°	.7547	.6561	1.1504	
25°	.4226	.9063	.4663	50°	.7660	.6428	1.1918	

Medidas de ángulos	Seno	Coseno	Tangente
51°	.7771	.6293	1.2349
52°	.7880	.6157	1.2799
53°	.7986	.6018	1.3270
54°	.8090	.5878	1.3764
55°	.8192	.5736	1.4281
56°	.8290	.5592	1.4826
57°	.8387	.5446	1.5399
58°	.8480	.5299	1.6003
59°	.8572	.5150	1.6643
60°	.8660	,5000	1.7321
61°	.8746	.4848	1.8040
62°	.8829	.4695	1.8807
63°	.8910	.4540	1.9626
64°	.8988	.4384	2.0503
65°	.9063	.4226	2.1445
66°	.9135	.4067	2.2460
67°	.9205	.3907	2.3559
68°	.9272	.3746	2.4751
69°	.9336	.3584	2.6051
70°	.9397	.3420	2.7475

Medidas de ángulos	Seno	Coseno	Tangente	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
71°	.9455	.3256	2.9042	
72°	.9511	.3090	3.0777	
73°	.9563	.2924	3.2709	
74°	.9613	.2756	3.4874	
75°	.9659	.2588	3.7321	
76°	.9703	.2419	4.0108	
770	.9744	.2250	4.3315	
78°	.9781	.2079	4.7046	
79°	.9816	.1908	5.1446	
80°	.9848	.1736	5.6713	
81°	.9877	.1564	6.3138	
82°	.9903	.1392	7.1154	
83°	.9925	.1219	8.1443	
84°	.9945	.1045	9.5144	
85°	.9962	.0872	11.4301	
86°	.9976	.0698	14.3007	
87°	.9986	.0523	19.0811	
88°	.9994	.0349	28.6363	
89°	.9998	.0175	57.2900	
90°	1.0000	.0000		
To L		E 155 12		

TABLA DE CUADRADOS Y RAÍCES CUADRADAS

N	N ²	\sqrt{N}	N	N^2	\sqrt{N}	ı N	N ²	\sqrt{N}	N	N^2	\sqrt{N}
1	1	1.000	41	1681	6.403	81	6561	9.000	121	14641	11.000
2	4	1.414	42	1764	6.481	82	6724	9.055	122	14884	11.045
3	9	1.732	43	1849	6.557	83	6889	9.110	123	15129	11.091
4	16	2.000	44	1936	6.633	84	7056	9.165	124	15376	11.136
5	25	2.236	45	2025	6.708	85	7225	9.220	125	15625	11.180
6	36	2.449	46	2116	6.782	86	7396	9.274	126	15876	11.225
7	49	2.646	47	2209	6.856	87	7569	9.327	127	16129	11.269
8	64	2.828	48	2304	6.928	88	7744	9.381	128	16384	11.314
9	81	3.000	49	2401	7.000	89	7921	9.434	129	16641	11.358
10	100	3.162	50	2500	7.071	90	8100	9.487	130	16900	11.402
11	121	3.317	51	2601	7.141	91	8281	9.539	131	17161	11.446
12	144	3.464	52	2704	7.211	92	8464	9.592	132	17424	11.489
13	169	3.606	53	2809	7.280	93	8649	9.644	133	17689	11.533
14	196	3.742	54	2916	7.348	94	8836	9.695	134	17956	11.576
15	225	3.873	55	3025	7.416	95	9025	9.747	135	18225	11.619
16	256	4.000	56	3136	7.483	96	9216	9.798	136	18496	11.662
17	289	4.123	57	3249	7.550	97	9409	9.849	137	18769	11.705
18	324	4.243	58	3364	7.616	98	9604	9.899	138	19044	11.747
19	361	4.359	59	3481	7.681	99	9801	9.950	139	19321	11.790
20	400	4.472	60	3600	7.746	100	10000	10.000	140	19600	11.832
21	441	4.583	61	3721	7.810	101	10201	10.050	141	19881	11.874
22	484	4.690	62	3844	7.874	102	10404	10.100	142	20164	11.916
23	529	4.796	63	3969	7.937	103	10609	10.149	143	20449	11.958
24	576	4.899	64	4096	8.000	104	10816	10.198	144	20736	12.000
25	625	5.000	65	4225	8.062	105	11025	10.247	145	21025	12.042
26	676	5.099	66	4356	8.124	106	11236	10.296	146	21316	12.083
27	729	5.196	67	4489	8.185	107	11449	10.344	147	21609	12.124
28	784	5.292	68	4624	8.246	108	11664	10.392	148	21904	12.166
29	841	5.385	69	4761	8.307	109	11881	10.440	149	22201	12.207
30	900	5.477	70	4900	8.367	110	12100	10.488	150	22500	12.247
31	961	5.568	71	5041	8.426	111	12321	10.536			
32	1024	5.657	72	5184	8.485	112	12544	10.583		- 1	
33	1089	5.745	73	5329	8.544	113	12769	10.630			
34	1156	5.831	74	5476	8.602	114	12996	10.677	*		
35	1225	5.916	75	5625	8.660	115	13225	10.724			
36	1296	6.000	76	5776	8.718	116	13456	10.770			
37	1369	6.083	77	5929	8.775	117	13689	10.817			
38	1444	6.164	78	6084	8.832	118	13924	10.863			
39	1521	6.245	79	6241	8.888	119	14161	10.909			
40	1600	6.325	80	6400	8.944	120	14400	10,954			